Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sonochemically Synthesized 3D Assemblies of Close-Packed In2S3 Quantum Dots: Structure, Size Dependent Optical and Electrical Properties

Identifieur interne : 000516 ( Main/Repository ); précédent : 000515; suivant : 000517

Sonochemically Synthesized 3D Assemblies of Close-Packed In2S3 Quantum Dots: Structure, Size Dependent Optical and Electrical Properties

Auteurs : RBID : Pascal:13-0355803

Descripteurs français

English descriptors

Abstract

Template-free conventional chemical and sonochemical approaches to 3D assemblies of indium(III) sulfide quantum dots were developed that allow deposition of strongly quantized cubic α-In2S3 nanocrystals close packed in thin film form. Our observation of metastable cubic structure at room temperature (instead of the thermodynamically most stable tetragonal β modification in the case of bulk material) was related to the very small crystal size. Because of heterogeneous sonochemical effects, the average crystal radius of the QD solids reduces from 2.5 to 2.0 nm upon sonification of the reaction system by continuous high-intensity ultrasound. Upon postdeposition annealing treatment, these values increase to 4.1 nm. Structural, optical and electrical properties of the synthesized QD solids were studied in details. The band gap energy value of 2.85 eV for the as-deposited QD solids in thin film form is strongly blue-shifted (by 0.85 eV) with respect to the value characteristic for a macrocrystalline specimen. In the case of as-deposited films by sonochemical approach, band gap value is 3.00 eV, indicating the possibility for further control of the optoelectronic properties of this material by sonochemical approach. Upon postdeposition thermal treatment at 150 and 200 °C, band gap energy red shifts to 2.20 and 2.00 eV were observed. Analysis of the size-quantization effects in the synthesized QD solids deposited in thin film form enabled us to estimate that the Bohr's excitonic radius in the studied semiconductor lies in the range from 2.5 to 4.1 nm. The absence of clearly defined excitonic peaks in the absorption spectra of the studied QD assemblies was attributed to the size-distribution of the nanoparticles and to the interdot electronic coupling effects. Analysis of the charge carrier transport properties in the QD assemblies within the Kazmerski's model indicated that the intercrystalline barrier height decreases by 0.04 eV upon thermal treatment of the films. Conductivity activation energy was found to be 0.82 eV, while the thermal band gap energy, calculated from the thermoelectrical measurements in the region where intrinsic conductivity mechanism is activated, was 2.22 eV. AFM measurements have shown that QD assemblies constituting the sonochemically deposited films show stronger tendency toward coagulation than those synthesized by conventional chemical approach.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0355803

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Sonochemically Synthesized 3D Assemblies of Close-Packed In
<sub>2</sub>
S
<sub>3</sub>
Quantum Dots: Structure, Size Dependent Optical and Electrical Properties</title>
<author>
<name sortKey="Pejova, Biljana" uniqKey="Pejova B">Biljana Pejova</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162</s1>
<s2>1001 Skopje</s2>
<s3>MKD</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>République de Macédoine (pays)</country>
<wicri:noRegion>1001 Skopje</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bineva, Irina" uniqKey="Bineva I">Irina Bineva</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Bulgarie</country>
<placeName>
<settlement type="city">Sofia</settlement>
<region nuts="2">Sofia-ville (oblast)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0355803</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0355803 INIST</idno>
<idno type="RBID">Pascal:13-0355803</idno>
<idno type="wicri:Area/Main/Corpus">000496</idno>
<idno type="wicri:Area/Main/Repository">000516</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1932-7447</idno>
<title level="j" type="abbreviated">J. phys. chem., C</title>
<title level="j" type="main">Journal of physical chemistry. C</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Absorption spectra</term>
<term>Activation energy</term>
<term>Cubic lattices</term>
<term>Electrical conductivity</term>
<term>Indium sulfide</term>
<term>Metastable phases</term>
<term>Nanocrystal</term>
<term>Nanomaterial synthesis</term>
<term>Quantum dots</term>
<term>Quantum size effect</term>
<term>Semiconductor materials</term>
<term>Sonochemistry</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Synthèse nanomatériau</term>
<term>Effet dimensionnel quantique</term>
<term>Sonochimie</term>
<term>Phase métastable</term>
<term>Conductivité électrique</term>
<term>Energie activation</term>
<term>Spectre absorption</term>
<term>Sulfure d'indium</term>
<term>Point quantique</term>
<term>Nanocristal</term>
<term>Réseau cubique</term>
<term>Semiconducteur</term>
<term>In2S3</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Template-free conventional chemical and sonochemical approaches to 3D assemblies of indium(III) sulfide quantum dots were developed that allow deposition of strongly quantized cubic α-In
<sub>2</sub>
S
<sub>3</sub>
nanocrystals close packed in thin film form. Our observation of metastable cubic structure at room temperature (instead of the thermodynamically most stable tetragonal β modification in the case of bulk material) was related to the very small crystal size. Because of heterogeneous sonochemical effects, the average crystal radius of the QD solids reduces from 2.5 to 2.0 nm upon sonification of the reaction system by continuous high-intensity ultrasound. Upon postdeposition annealing treatment, these values increase to 4.1 nm. Structural, optical and electrical properties of the synthesized QD solids were studied in details. The band gap energy value of 2.85 eV for the as-deposited QD solids in thin film form is strongly blue-shifted (by 0.85 eV) with respect to the value characteristic for a macrocrystalline specimen. In the case of as-deposited films by sonochemical approach, band gap value is 3.00 eV, indicating the possibility for further control of the optoelectronic properties of this material by sonochemical approach. Upon postdeposition thermal treatment at 150 and 200 °C, band gap energy red shifts to 2.20 and 2.00 eV were observed. Analysis of the size-quantization effects in the synthesized QD solids deposited in thin film form enabled us to estimate that the Bohr's excitonic radius in the studied semiconductor lies in the range from 2.5 to 4.1 nm. The absence of clearly defined excitonic peaks in the absorption spectra of the studied QD assemblies was attributed to the size-distribution of the nanoparticles and to the interdot electronic coupling effects. Analysis of the charge carrier transport properties in the QD assemblies within the Kazmerski's model indicated that the intercrystalline barrier height decreases by 0.04 eV upon thermal treatment of the films. Conductivity activation energy was found to be 0.82 eV, while the thermal band gap energy, calculated from the thermoelectrical measurements in the region where intrinsic conductivity mechanism is activated, was 2.22 eV. AFM measurements have shown that QD assemblies constituting the sonochemically deposited films show stronger tendency toward coagulation than those synthesized by conventional chemical approach.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1932-7447</s0>
</fA01>
<fA03 i2="1">
<s0>J. phys. chem., C</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA06>
<s2>14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Sonochemically Synthesized 3D Assemblies of Close-Packed In
<sub>2</sub>
S
<sub>3</sub>
Quantum Dots: Structure, Size Dependent Optical and Electrical Properties</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>PEJOVA (Biljana)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>BINEVA (Irina)</s1>
</fA11>
<fA14 i1="01">
<s1>Institute of Chemistry, Faculty of Natural Sciences and Mathematics, Sts. Cyril and Methodius University, POB 162</s1>
<s2>1001 Skopje</s2>
<s3>MKD</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Boulevard</s1>
<s2>1784 Sofia</s2>
<s3>BGR</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>7303-7314</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>549C</s2>
<s5>354000173344190450</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>60 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0355803</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of physical chemistry. C</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Template-free conventional chemical and sonochemical approaches to 3D assemblies of indium(III) sulfide quantum dots were developed that allow deposition of strongly quantized cubic α-In
<sub>2</sub>
S
<sub>3</sub>
nanocrystals close packed in thin film form. Our observation of metastable cubic structure at room temperature (instead of the thermodynamically most stable tetragonal β modification in the case of bulk material) was related to the very small crystal size. Because of heterogeneous sonochemical effects, the average crystal radius of the QD solids reduces from 2.5 to 2.0 nm upon sonification of the reaction system by continuous high-intensity ultrasound. Upon postdeposition annealing treatment, these values increase to 4.1 nm. Structural, optical and electrical properties of the synthesized QD solids were studied in details. The band gap energy value of 2.85 eV for the as-deposited QD solids in thin film form is strongly blue-shifted (by 0.85 eV) with respect to the value characteristic for a macrocrystalline specimen. In the case of as-deposited films by sonochemical approach, band gap value is 3.00 eV, indicating the possibility for further control of the optoelectronic properties of this material by sonochemical approach. Upon postdeposition thermal treatment at 150 and 200 °C, band gap energy red shifts to 2.20 and 2.00 eV were observed. Analysis of the size-quantization effects in the synthesized QD solids deposited in thin film form enabled us to estimate that the Bohr's excitonic radius in the studied semiconductor lies in the range from 2.5 to 4.1 nm. The absence of clearly defined excitonic peaks in the absorption spectra of the studied QD assemblies was attributed to the size-distribution of the nanoparticles and to the interdot electronic coupling effects. Analysis of the charge carrier transport properties in the QD assemblies within the Kazmerski's model indicated that the intercrystalline barrier height decreases by 0.04 eV upon thermal treatment of the films. Conductivity activation energy was found to be 0.82 eV, while the thermal band gap energy, calculated from the thermoelectrical measurements in the region where intrinsic conductivity mechanism is activated, was 2.22 eV. AFM measurements have shown that QD assemblies constituting the sonochemically deposited films show stronger tendency toward coagulation than those synthesized by conventional chemical approach.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A16</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B70H67</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70C63</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Synthèse nanomatériau</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Nanomaterial synthesis</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Síntesis nanomaterial</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Effet dimensionnel quantique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Quantum size effect</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Efecto dimensional cuántico</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Sonochimie</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Sonochemistry</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Sonoquímica</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Phase métastable</s0>
<s5>05</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Metastable phases</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Conductivité électrique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Electrical conductivity</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Energie activation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Activation energy</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Spectre absorption</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Absorption spectra</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Sulfure d'indium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Indium sulfide</s0>
<s5>15</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Indio sulfuro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>16</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>16</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Nanocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Nanocrystal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Nanocristal</s0>
<s5>17</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Réseau cubique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Cubic lattices</s0>
<s5>19</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Semiconducteur</s0>
<s5>20</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor materials</s0>
<s5>20</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>In2S3</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>336</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000516 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000516 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0355803
   |texte=   Sonochemically Synthesized 3D Assemblies of Close-Packed In2S3 Quantum Dots: Structure, Size Dependent Optical and Electrical Properties
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024